POWER SERIES (I - PART)

DEF: $\sum_{n=0}^{\infty} a_{n}\left(\mathbf{t}-\mathbf{t}_{\mathbf{0}}\right)^{\mathbf{n}}$ is power series, if we put $\mathbf{t}-\mathbf{t}_{\mathbf{0}}=\mathbf{x}$, we have $\sum_{n=0}^{\infty} a_{n} \mathrm{x}^{\mathrm{n}}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\ldots$
Partial sum is $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=0}^{n} a_{k} x^{k}$; n-th rest is $\mathrm{R}_{\mathrm{n}}(\mathrm{x})=\sum_{k=0}^{\infty} a_{n+k} x^{n+k}$
If there is an R so that $|x|<\mathrm{R}$ then the series converges, and for $|x|>\mathrm{R}$ diverges. Interval ($-R, R$) is the interval of convergence

	converges		
diverges	$-R$		
			diverges

For $\mathbf{x}=\mathbf{R}$ and $\mathbf{x}=-\mathbf{R}$, working separately, using the criteria for the convergence of number series.
The number R is called the RADIUS OF CONVERGENCE of the power series.

Cauchy formula: $\quad \varlimsup_{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\boldsymbol{R}$
Root formula : $\quad \frac{1}{\overline{\lim _{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}}=\boldsymbol{R} \quad$ or $\quad \frac{1}{R}=\overline{\varlimsup_{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}$
Apply the following theorem: Let $\mathrm{S}(\mathrm{x})=\sum_{n=0}^{\infty} a_{n} \mathrm{x}^{\mathrm{n}}$

1) $\lim _{x \rightarrow x_{0}} \mathrm{~S}(\mathrm{x})=\lim _{x \rightarrow x_{0}} \sum_{n=0}^{\infty} a_{n} \mathrm{x}^{\mathrm{n}}=\sum_{n=0}^{\infty}\left(\lim _{x \rightarrow x_{0}} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right)=\mathrm{S}\left(\mathrm{x}_{0}\right)$
2) $\int_{a}^{b}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) d x=\sum_{n=0}^{\infty}\left(\int_{a}^{b} a_{n} x^{n} d x\right)$
3) Power series in the interval of convergence can be differentiated by the member

DEVELOPMENT

$\mathrm{e}^{\mathrm{x}}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ where is $(-\infty<\mathrm{x}<\infty)$

$$
\sin \mathrm{x}=\sum_{n=0}^{\infty}(-1)^{\mathrm{n}} \frac{x^{2 n+1}}{(2 n+1)!}, \quad(-\infty<\mathrm{x}<\infty)
$$

$\cos \mathrm{x}=\sum_{n=0}^{\infty}(-1)^{\mathrm{n}} \frac{x^{2 n}}{(2 n)!}, \quad(-\infty<\mathrm{x}<\infty)$

$$
(1+\mathrm{x})^{\mathrm{m}}=\sum_{n=0}^{\infty}\binom{m}{n} \mathrm{x}^{\mathrm{n}}, \quad-1<\mathrm{x}<1
$$

$\ln (1+\mathrm{x})=\sum_{n=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{x^{n}}{n}, \quad-1<\mathrm{x}<1$
$\ln (1-\mathrm{x})=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}, \quad-1<\mathrm{x}<1$
$\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad-1<\mathrm{x}<1$
$\frac{x}{1-x}=\sum_{n=1}^{\infty} \mathrm{x}^{\mathrm{n}}$

Example 1.

Determine the radius of convergence and examine the convergence of the ends of the interval of convergence for the following power series:
a) $\sum_{n=0}^{\infty}(n+1) x^{n}$
b) $\sum_{n=0}^{\infty} \frac{x^{n}}{n}$
c) $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n^{2}+1}$

Solutions:

a)

$$
\sum_{n=0}^{\infty}(n+1) x^{n}
$$

Here is $\quad a_{n}=n+1$ and we will use : $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\mathbf{R}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{n+1}{n+2}=\frac{1}{1}=1$
We got that series converges in the interval $(-1,1)$. Now we must examine for $x=-1$ and $x=1$
For $\mathrm{x}=-1$
Substituting this value in the given series : $\sum_{n=0}^{\infty}(n+1) x^{n} \rightarrow \sum_{n=0}^{\infty}(n+1)(-1)^{n}$
We have obtained an alternative series. As is $\lim _{n \rightarrow \infty}(n+1)=\infty$ we conclude here that the series diverges.
$\underline{\text { For } \mathrm{x}=1}$
$\sum_{n=0}^{\infty}(n+1) x^{n} \rightarrow \sum_{n=0}^{\infty}(n+1)(1)^{n}=\sum_{n=0}^{\infty}(n+1)$
The number series also diverges, because: $\lim _{n \rightarrow \infty}(n+1)=\infty$
Conclusion: $\sum_{n=0}^{\infty}(n+1) x^{n}$ is convergent on the interval $(-1,1)$
b) $\sum_{n=0}^{\infty} \frac{x^{n}}{n}$

Here is $\quad a_{n}=\frac{1}{n} \quad$ so it is convenient to again use the Cauchy formula:
$\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}}=\lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{1}{1}=1$
$\mathbf{R}=\mathbf{1}, \quad$ and for now we have that series converges on the interval $(-1,1)$

For $\mathrm{x}=-1$
$\sum_{n=0}^{\infty} \frac{x^{n}}{n} \rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}$

We have obtained an alternative series where is $a_{n}=\frac{1}{n}$
Series is decreasing because $n<n+1 \rightarrow \frac{1}{n}>\frac{1}{n+1} \rightarrow a_{n}>a_{n+1}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Leibniz criterion : converge here!

For $\mathrm{x}=1$
$\sum_{n=0}^{\infty} \frac{x^{n}}{n} \rightarrow \sum_{n=0}^{\infty} \frac{1^{n}}{n}=\sum_{n=0}^{\infty} \frac{1}{n}$
For this series since before we know that diverges (see previous files on a number series)

Conclusion:

Series $\quad \sum_{n=0}^{\infty} \frac{x^{n}}{n}$ is convergent on the interval [-1,1)
c) $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n^{2}+1}$

As is $a_{n}=\frac{2^{n}}{n^{2}+1} \quad$ It is convenient to try Cauchy formula:
$\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{n^{2}+1}}{\frac{2^{n+1}}{(n+1)^{2}+1}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n+1}} \cdot \frac{(n+1)^{2}+1}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n} \cdot 2} \cdot \frac{n^{2}+2 n+2}{n^{2}+1}$ This is $1 \quad=\frac{1}{2}$

This means that order converges, for now, in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$

For $\mathrm{x}=-\frac{1}{2}$
$\sum_{n=0}^{\infty} \frac{2^{n}\left(-\frac{1}{2}\right)^{n}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{2^{n} \frac{(-1)^{n}}{2^{n}}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$
Here is $a_{n}=\frac{1}{n^{2}+1}$.
$\lim _{n \rightarrow \infty} \frac{1}{n^{2}+1}=0$ Leibniz criterion : this series converges.

For $\mathrm{x}=\frac{1}{2}$
$\sum_{n=0}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{2^{n} \frac{1}{2^{n}}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$
The number series is also convergent!
Conclusion: Series is convergent on the interval $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n^{2}+1}\left[-\frac{1}{2}, \frac{1}{2}\right]$

Example 2.

Determine the radius of convergence and examine the convergence of the ends of the interval of convergence for the following power series:
a) $\sum_{n=0}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}} x^{n}$
b) $\sum_{n=0}^{\infty}(-2)^{n} x^{2 n}$

Rešenje:

Here we use another formula to find radius of convergence: $\frac{1}{R}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$
a) $\quad \sum_{n=0}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}} x^{n}$
$\frac{1}{R}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+1}{n}\right)^{n^{2}}}=\varlimsup_{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\varlimsup_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
$\frac{1}{R}=e \rightarrow R=\frac{1}{e}$

So now we know that this series converges in the interval $\left(-\frac{1}{e}, \frac{1}{e}\right)$.
For $\mathrm{x}=\frac{1}{e}$
$\sum_{n=0}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}}\left(\frac{1}{e}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}} \frac{1}{e^{n}}$

Check first whether the general approaches zero:
$\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n^{2}} \frac{1}{e^{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n \cdot n} \frac{1}{e^{n}}=\lim _{n \rightarrow \infty} e^{n} \frac{1}{e^{n}}=1$ From this we conclude that the series diverges.

For $\mathrm{x}=-\frac{1}{e}$

Here is a alternative series, but similar ways of thinking come to the conclusion that the series diverges here.
Conclusion: $\sum_{n=0}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}} x^{n}$ converges in the interval $\left(-\frac{1}{e}, \frac{1}{e}\right)$.
b) $\quad \sum_{n=0}^{\infty}(-2)^{n} x^{2 n}$

We will use same criteria:
$\frac{1}{R}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\varlimsup_{n \rightarrow \infty} \sqrt[n]{2^{n}}=\varlimsup_{n \rightarrow \infty} 2=2$
$\frac{1}{R}=2 \rightarrow R=\frac{1}{2}$
We went to watch:
Let's look at a given series $\sum_{n=0}^{\infty}(-2)^{n} x^{2 n}=\sum_{n=0}^{\infty}(-2)^{n}\left(x^{2}\right)^{n}$
This means that this refers to the radius of convergence x^{2} and for x will be :
$R=\frac{1}{2}$ is for $\mathrm{x}^{2} \rightarrow R=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$ is for x
Series therefore converges in the interval $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
For $x=-\frac{1}{\sqrt{2}} \quad$ and $\quad x=\frac{1}{\sqrt{2}}$ Series will be divergent because obviously the general not approaches zero.

Conclusion: Series $\sum_{n=0}^{\infty}(-2)^{n} x^{2 n}$ converges in the interval $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

